Codersee
Kotlin on the backend
Codersee
Kotlin on the backend
This MongoDB overview will be a great introduction to the most popular NoSQL database- from its benefits to real-life use cases.
Hello friend and welcome to the MongoDB overview 🙂 In this introduction, we will cover everything from its genesis, benefits, and drawbacks to real-life use cases.
Please keep in mind this is the 4th blog post in a series about the most popular databases, and you can find the previous articles right here:
Please sit back, relax, and get ready to discover why MongoDB is taking the world by storm.
If you enjoy whiteboard animations, then right here you can find a video version of this article:
If you find this content useful, please leave a subscription 😉
As the first thing in our MongoDB overview, let’s take a second to learn more about its genesis.
MongoDB’s history starts in October 2007 in a company called 10gen. The founders were looking for a scalable solution, capable of dealing with a high volume in their internal project. (Un)Fortunately, at that time relational databases were not well-suited to handle the kind of semi-structured data they needed. As a result, they decided to build their own NoSQL database with the scalability and large amounts of unstructured data handling in mind.
Almost two years later, in February 2009, Mongo was released as an open-source project. Since then, it quickly gained popularity among developers and businesses who were looking for more flexible solutions. Of course, compared to relational databases.
In 2013, 10gen changed its name to MongoDB, reflecting the growing popularity of the database.
Today, Mongo is widely used by organizations of all sizes, across various industries. Not to mention, we can choose not only between the Community and Enterprise editions but also a cloud-based database as a service called MongoDB Atlas.
MongoDB is written in C++ and uses a binary form of JSON called BSON (Binary JSON) to store data. These documents can have fields that hold values of different types, such as:
Just like rows in relational databases are combined together in tables, Mongo documents are grouped in collections. Of course, with one, important difference: each document can have a different structure.
When it comes to scalability, MongoDB uses a sharding architecture to scale horizontally. Sharding, in simple words, allows a Mongo cluster to store more data than can fit on a single server by automatically partitioning the data across multiple machines. In such a situation, each shard contains a subset of the data and the query will be directed to the appropriate shard based on the query.
Of course, MongoDB also provides additional advanced features, like complex query language, indexing, a full-text search, and a replica set mechanism.
So, with all of that covered, we can take a while to learn a couple of MongoDB advantages:
Of course, I must list a couple of disadvantages in this MongoDB introduction, as well:
With all of that said, let’s figure out when Mongo can be a good choice:
And as the last thing in our MongoDB overview, let’s figure out which companies are using it in their technology stack.
eBay uses MongoDB to store information on items for sale and to power the search functionality. Additionally, Mongo is used to store data about users’ browsing and buying history, which is then used for personalization purposes.
Another great example is Vodafone, which uses it for IoT, new 5G innovations, and cloud-native apps.
Moreover, Uber makes use of Mongo to store and manage data related to its operations, such as information on drivers, riders, and rides.
Of course, the list is much longer and contains over 35,000 customers, like Forbes, MetLife, Elementor, and Fiverr.
And that’s all for this MongoDB overview. I hope that you enjoyed this introduction and if that’s the case, then please let me know in the comments 🙂
Of course, if you’d like to expand your knowledge of MongoDB in practice, then check out my other resources:
Thank you and see you in the next articles!